Visualization with Locally Linear Embedding

نویسنده

  • Maggy Anastasia Suryanto
چکیده

In this report, the student presents her study on a multivariate visualization task. Specifically, the student would like to learn the use of Locally Linear Embedding (LLE) for visualization. While the experiment is using Wisconsin Breast Cancer dataset, the method is more generally applicable to other high-dimensional data as well. Three experiments were run to visualize the dataset. The three experiments were chosen to show the ability of LLE in visualizing linear as well as non linear data. Some comparisons with more traditional method, PCA, is also presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature Mapping using PCA, Locally Linear Embedding and Isometric Feature Mapping for EEG-based Brain Computer Interface

To enable the user to visualize their own brain activity is an essential part of a Brain-Computer Interface (BCI). For visualization, we need a dimension reduction algorithm, because only a few relevant components of the high-dimensional feature vectors, extracted from the electroencephalogram (EEG) signals, can be visualized. For this purpose, three feature mapping methods, Principal Component...

متن کامل

Random Maxout Features

In this paper, we propose and study random maxout features, which are constructed by first projecting the input data onto sets of randomly generated vectors with Gaussian elements, and then outputing the maximum projection value for each set. We show that the resulting random feature map, when used in conjunction with linear models, allows for the locally linear estimation of the function of in...

متن کامل

Guided Locally Linear Embedding

Nonlinear dimensionality reduction is the problem of retrieving a low-dimensional representation of a manifold that is embedded in a high-dimensional observation space. Locally Linear Embedding (LLE), a prominent dimensionality reduction technique is an unsupervised algorithm; as such, it is not possible to guide it toward modes of variability that may be of particular interest. This paper prop...

متن کامل

Dimensionality reduction and visualization of geoscientific images via locally linear embedding

The locally linear embedding (LLE) algorithm is useful for analyzing sets of very different geoscientific images, ranging from smooth potential field images, to sharp outputs from modeling fracturing and fluid flows via cellular automata, to hand sketches of geological sections. LLE maps the very high-dimensional space embedding the images into 2-D, arranging the images on a plane. This arrange...

متن کامل

Locally Linear Embedded Eigenspace Analysis

The existing nonlinear local methods for dimensionality reduction yield impressive results in data embedding and manifold visualization. However, they also open up the problem of how to define a unified projection from new data to the embedded subspace constructed by the training samples. Thinking globally and fitting locally, we present a new linear embedding approach, called Locally Embedded ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006